ROBOTICS 5ab356e70402d10aa42866f8 False 36 2
background image not found
update image not found
Flying Dragon Robot Transforms Itself to Squeeze Through Gaps. Dragon can change its shape to move through complex environments and even manipulate objects. There’s been a lot of recent focus on applications for aerial robots, and one of the areas with the most potential is indoors. The thing about indoors is that by definition you have to go through doors to get there, and once you’re inside, there are all kinds of things that are horribly dangerous to aerial robots, like more doors, walls, windows, people, furniture, hanging plants, lampshades, and other aerial robots, inevitably followed by still more doors. One solution is to make your robots super small, so that they can fit through small openings without running into something fragile and expensive, but then you’re stuck with small robots that can’t do a whole heck of a lot. Another solution is to put your robots in protective cages, but then you’re stuck with robots that can’t as easily interact with their environment, even if they want to. Ideally, you’d want a robot that doesn’t need that level of protection, that’s somehow large and powerful but also small and nimble at the same time. At JSK Lab at the University of Tokyo, roboticists have developed a robot called DRAGON, which (obviously) stands for for “Dual-rotor embedded multilink Robot with the Ability of multi-degree-of-freedom aerial transformation.” It’s a modular flying robot powered by ducted fans that can transform literally on the fly, from a square to a snake to anything in between, allowing it to stretch out to pass through small holes and then make whatever other shape you want once it’s on the other side. DRAGON is made of a series of linked modules, each of which consists of a pair of ducted fan thrusters that can be actuated in roll and pitch to vector thrust in just about any direction you need. The modules are connected to one another with a powered hinged joint, and the whole robot is driven by an Intel Euclid and powered by a battery pack (providing 3 minutes of flight time, which is honestly more than I would have thought), mounted along the robot’s spine. This particular prototype is made up of four modules, allowing it to behave sort of like a quad rotor, even though I suppose technically it’s an octorotor. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
2 3