http://WWW.ROBOTICS4U.IN
ROBOTICS 5ab356e70402d10aa42866f8 False 36 2
OK
background image not found
Found Update results for
'coordinate system'
9
Experimental drone uses AI to spot violence in crowds. Whether or not it works well in practice is another story. Drone-based surveillance still makes many people uncomfortable, but that isn't stopping research into more effective airborne watchdogs. Scientists have developed an experimental drone system that uses AI to detect violent actions in crowds. The team trained their machine learning algorithm to recognize a handful of typical violent motions (punching, kicking, shooting and stabbing) and flag them when they appear in a drone's camera view. The technology could theoretically detect a brawl that on-the-ground officers might miss, or pinpoint the source of a gunshot. As The Verge warned, the technology definitely isn't ready for real-world use. The researchers used volunteers in relatively ideal conditions (open ground, generous spacing and dramatic movements). The AI is 94 percent effective at its best, but that drops down to an unacceptable 79 percent when there are ten people in the scene. As-is, this system might struggle to find an assailant on a jam-packed street -- what if it mistakes an innocent gesture for an attack? The creators expect to fly their drone system over two festivals in India as a test, but it's not something you'd want to rely on just yet. There's a larger problem surrounding the ethical implications. There are questions about abuses of power and reliability for facial recognition systems. Governments may be tempted to use this as an excuse to record aerial footage of people in public spaces, and could track the gestures of political dissidents (say, people holding protest signs or flashing peace symbols). It could easily combine with other surveillance methods to create a complete picture of a person's movements. This might only find acceptance in limited scenarios where organizations both make it clear that people are on camera and with reassurances that a handshake won't lead to police at their door. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
Nvidia is training robots to learn new skills by observing humans. Initial experiments with the process have seen a Baxter robot learn to pick up and move colored boxes and a toy car in a lab environment. The researchers hope the development of the new deep-learning based system will go some way to train robots to work alongside humans in both manufacturing and home settings. “In the manufacturing environment, robots are really good at repeatedly executing the same trajectory over and over again, but they don’t adapt to changes in the environment, and they don’t learn their tasks, ” Nvidia principal research scientist Stan Birchfield told VentureBeat. “So to repurpose a robot to execute a new task, you have to bring in an expert to reprogram the robot at a fairly low level, and it’s an expensive operation. What we’re interested in doing is making it easier for a non-expert user to teach a robot a new task by simply showing it what to do.” The researchers trained a sequence of neural networks to perform duties associated with perception, program generation, and program execution. The result was that the robot was able to learn a new task from a single demonstration in the real world. Once the robot witnesses the task, it generates a human-readable description of the states required to complete the task. A human can then correct the steps if necessary before execution on the real robot. “There’s sort of a paradigm shift happening in the robotics community now, ” Birchfield said. “We’re at the point now where we can use GPUs to generate essentially a limitless amount of pre-labeled data essentially for free to develop and test algorithms. And this is potentially going to allow us to develop these robotics systems that need to learn how to interact with the world around them in ways that scale better and are safer.” In a video released by the researchers, human operator shows a pair of stacks of cubes to the robot. The system then understands an appropriate program and correctly places the cubes in the correct order. Information gathered by - Robotics for u. Bangalore Robotics, BTM Robotics training center, Robotics spares, Bannerghatta Robotics training center, best robotics training in bangalore,
Controlling robots with brainwaves and hand gestures Computer Science and Artificial Intelligence Laboratory system enable people to correct robot mistakes on multiple-choice tasks. Getting robots to do things isn’t easy, usually, scientists have to either explicitly program them or get them to understand how humans communicate via language. But what if we could control robots more intuitively, using just hand gestures and brainwaves? A new system spearheaded by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) aims to do exactly that, allowing users to instantly correct robot mistakes with nothing more than brain signals and the flick of a finger. Building off the team’s past work focused on simple binary-choice activities, the new work expands the scope to multiple-choice tasks, opening up new possibilities for how human workers could manage teams of robots. By monitoring brain activity, the system can detect in real-time if a person notices an error as a robot does a task. Using an interface that measures muscle activity, the person can then make hand gestures to scroll through and select the correct option for the robot to execute. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
Nvidia 's AI makes a breakthrough in ray tracing(computer graphics): Nvidia' AI that started out in 2017 as something that was not expected to do as much as it has already done like enriching graphics, transforming huge amounts of medical data into life saving breakthroughs, identifying diseases with a simple drop of blood, finding new ways to bring cures to the market faster, helping crops to flourish with optimal materials, customer assistance, self driving vehicles, analysis of various things in search for solutions etc. This AI became popular due to the Isaac robot simulator program. This got rid of programming and let the AI or robot think and learn on its own. Of course initially it was inefficient but after they found out that the robot could successfully learn something like hockey they wanted to make it efficient. This is where their idea of a virtual world comes in. They crated a program that takes the brain of a robot and puts it in a virtual world where it is allowed to try as much as it likes to achieve a certain task. This virtual world follows the laws of our world except for time. In this world a robot can practice its goal in very less time therefore becoming efficient. This AI has now made a breakthrough in computer graphics. ray tracing which is a method used for non real time instances due to its low computing speed has now been turned into a more faster computing one to handle real time gaming systems. Ray tracing is normally used to enhance effects bye understanding how our eye works, but was unable to handle on going instances like gaming and that was why it was limited to only movies.But now thanks to the AI and the quadro GV100 it is now possible to use get high quality graphics by using ray tracing for games as well. This also cuts the cost to 1/5 the original and takes 1/7 the original time taken. Issued by BTM layout robotic center
Researchers build a self-healing 'robot skin'. Puncture a hole, and the alloy will fill in the gap. Most conventional androids are fairly rigid, susceptible to damage and difficult to repair. However, scientists are determined to (literally) give them thicker skins. They've experimented with soft, deformable circuits that are flexible, and could reduce business expenses in the long term -- but are still prone to tearing and puncturing. The solution to these issues may lie in one recent advancement. A group of researchers from Carnegie Mellon University have found a way to counter surface damage and electrical failure commonly observed in soft materials used in engineering robotic electronics. Like previous efforts, it involves a certain kind of polymer. To create a material that is both flexible and resistant to damage, Carmel Majidi and his team inserted liquid micro droplets of a gallium-indium based metal alloy into a soft, elastomer shell. Essentially, it's a solid-liquid hybrid that is stretchable, electrically insulating and capable of auto-repair even when damaged multiple times. Where most other self-healing soft electronics need exposure to heat, increased humidity or manual reassembly to get back to health, the metal-elastomer composite heals itself by forming new electrical pathways. Majidi says the inspiration behind the composite material comes from the nervous system's ability to regenerate itself. It isn't mimicking neuroplasticity entirely, though; while the metal-elastomer could be useful in wearable computing and inflatable airships to protect electrical wiring from potential damage, there's no such protection for mechanical or structural damage. That's the eventual aim -- creating a material which helps robots weather both electrical and structural defects and, like Astro Boy, interact with humans more safely. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
New giant drones are strong enough to perform jobs such as cleaning wind turbines, fighting fires and even carrying people to safety. Some of the dirtiest, most dangerous jobs are being taken over by artificial intelligence, robots, and drones. Machines are slowly becoming man’s best friend, helping us do tough, risky, or menial tasks. Future drones will do more than just peruse the skies, surveying and filming. New innovations in drone technology show their potential to take on much larger tasks that benefit society in new ways. New giant drones are now capable of cleaning wind turbines, fighting fires, and even carrying people to safety. An innovative startup, Aeron, has built a giant drone equipped with 28 motors and 16 batteries. The stout prototypes can lift up to 400 pounds, potentially rescuing people from burning buildings. In a series of videos, the founders demonstrate how the new drones can manoeuvre with hoses to clean and de-ice wind turbines. These large quadcopters can manoeuvre alongside tall buildings, clean the windows, or put out a potential fire.The ambitious startup, backed by Y Combinator, is already getting orders from around the world to help clean and de-ice wind turbines. The greatest challenge for these new drones is sustaining power. Relying on battery only, these drones can only carry a load for about twelve minutes. For now, the drones are better off tethered and connected to a power source from the ground. As the capability of drones expands, the implications for abuse become more real, too. A drone that can rescue people from fires can also identify, locate, and displace a person for various reasons. Large drones of this nature could be used to protect property, locating and removing threats from private areas. Who will make the rules that govern how drones can and cannot be used? A large drone that fights fires can also fight insurrection, threaten protestors, or spray down mobs. In the eyes of authority, this could be seen as a good use for drones, to curb violence; however, the power could readily be abused. Government forces could use drones in an authoritarian, intimidating manner, threatening peaceful assembly, free speech, and democracy. Drones equipped with tear gas could help riot police disperse their opposition. Large drones could easily be used as a means of force to control others. (Related: Drone makers looking to expand into civilian law enforcement market as a replacement for police helicopters.) A giant drone that can operate hoses to clean wind turbines also has the capability to operate hoses to fumigate from overhead. If a city council declared that a vector-borne disease was threatening their community, they could deploy these large drones overhead to fumigate mosquitoes and ticks in certain areas. The residents of the city will have no control over the operation or the number of nervous system toxins that are being sprayed into the air. That same drone could be used to spray disinfectants over an area that has been declared an outbreak zone. Health officials, paying no mind to the consequences of spraying people with biological agents and other chemicals, could experiment with airborne flu vaccines to combat a declared flu outbreak. As drone capabilities expand, it won’t be long before authorities begin using the technology to their advantage. It will be much easier for authorities to carry out force if they can hide behind the technology. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
This MIT Gadget Can Google Search Your Thoughts. Last night's 60 Minutes took a look inside MIT's Media Lab. Calling it “the Future Factory, " the show got a look at some of the remarkable projects being built, including devices that can Google your thoughts and capture the brain's creativity while going to sleep. Ever since its creation in 1988, books like Steward Brand's The Media Lab: Inventing the Future at M.I.T looked at its early work in studying how to create holograms, recreate human motion, create flat screens, and a host of other technical achievements of the past. As for the present, 60 Minute's Scott Pelley gets a firsthand look at a variety of projects from the Media Lab, with the most outlandish being the brain-to-Google device. Called AlterEgo, the system detects neuromuscular signals in the jaw and face that stem from internal verbalizations, the brain's thought process. After detecting questions in the mind, AlterEgo then transmits the answers through bone vibrations in the ear canal. This allows for the user's natural listening process to continue unabated. Other projects include growing plants without dirt, building better prosthetic limbs, and robots that record thoughts at the moment between consciousness and sleep, attempting to capture the brain at its most creative. Content gathered by BTM robotics training centre, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centres in Bannerghatta road, robotics training centres in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
Firefighting Robot Snake Flies on Jets of Water. Using steerable jets of water like rockets, this robot snake can fly into burning buildings to extinguish fires. Fires have an unfortunate habit of happening in places that aren’t necessarily easy to reach. Whether the source of the fire is somewhere deep within a building, or up more than a floor or two, or both, firefighters have few good options for tackling them. They can either pour water into windows (which doesn’t always work that well), or they can try and get into the building, which seems like it’s probably super dangerous. At the International Conference on Robotics and Automation last month, researchers from Tohoku University and National Institute of Technology, Hachinohe College, in Japan, presented a new kind of snake-like robot with the body of a fire house. Like other snake robots, this one has the potential to be able to wiggle its way into windows or other gaps in a structure, with the benefit of carrying and directing water as it goes. What’s so cool about this particular design, though, is how it powers itself: By firing high pressure jets of water downwards like rocket engines, it can lift itself off of the ground and fly. What’s happening here might be complex to implement in practice, but in principle, it’s not too complicated: There are sets of steerable nozzle modules distributed along the length of the hose. These modules siphon water out of the high pressure stream inside of the hose, and spray it downwards. As the water exits downwards at high velocity, it pushes the hose upwards, and with enough of these modules squirting out high pressure water, the entire hose can be lifted into the air. Just like a rocket, it’s not dependent on ground proximity to work, so as long as you keep on giving it more hose and water at a high enough pressure, it’ll go as high as you want. Since the nozzles are steerable, each module can direct itself independently, letting the hose weave itself through small gaps deep into a structure in order to find the source of a fire. And the “head” module comes with a few extra degrees of freedom to allow the water stream to be directed more precisely. And of course, while the head nozzle is fighting the source of the fire, a byproduct of the body of the house keeping itself airborne is that it’s drenching everything that it’s passing over, while also keeping itself cool. The 2-meter long prototype in the video above is intended to be a single segment in a robot that can be extended to an arbitrary length by just adding on more segments. A gas engine powered a compressor that provided water at 0.7 MPa. It worked reasonably well, as prototypes go, but it’s really more of a proof of concept in hardware than anything else, and obviously there’s a lot to do before a system like this could be real-world useful. The researchers readily admit that their current control algorithms are “not sophisticated, ” and that they’ll need to put some work into making it more stable, more controllable, and able to handle more modules. They’re actively working on it, though, and we’re looking forward to this tech being adapted to garden hoses as well. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
SAY HI TO CIMON, THE FIRST AI-POWERED ROBOT TO FLY IN SPACE. When you thought that Artificial Intelligence (AI) is redefining life on Earth, think again! Meet CIMON, the first AI-powered robot who was launched into space from Florida on Friday, June 29th to join the crew and assist astronauts of the International Space Station (ISS). CIMON was launched by a SpaceX rocket carrying food and supplies for the crew aboard the International Space Station. At CIMON’s pre-launch news conference, Kirk Shireman, NASA’s International Space Station (ISS) program manager, addressed that the knowledge base and ability to tap into AI in a way that is useful for the task that is done is really critical for having humans further and further away from the planet. CIMON or (Crew Interactive Mobile Companion) is programmed to answer voice commands in English. The AI-powered robot is roughly the size of a volleyball and weighs 5 kilograms. CIMON will float through the zero-gravity environment of the space station to research a database of information about the ISS. In addition to the mechanical tasks assigned, the AI-powered CIMON can even assess the moods of its human crewmates at the ISS and interact accordingly with them. An Intelligent Astronaut CIMON is the brainchild of the European aerospace company Airbus. With the artificial intelligence inside powered by IBM, AI-Powered CIMON was initially built for the German space agency. Alexander Gerst, a German astronaut currently aboard the ISS, assisted with the design of CIMON’s screen prompts and vocal controls. As per the mission description written by Airbus representatives, CIMON’s mission calls for the AI-Powered astronaut robot to work with Gerst on three separate investigations. Cimon’s tasks at ISS include experimenting with crystals, working together with Gerst to solve the Rubik’s cube and performing a complex medical experiment using itself as an ‘intelligent’ flying camera. CIMON can interact with anyone at ISS; the AI-powered robot will nod when any command is spoken in English. However, CIMON is programmed to specifically help Gerst during its first stay on the ISS. Alexander Gerst can make CIMON work by speaking commands in English like, ‘CIMON, could you please help me perform a certain experiment? or could you please help me with the procedure?'” In response, CIMON will fly towards Alexander Gerst, to start the communication. An Interactive Step Forward CIMON knows whom it is talking to through its inbuilt facial-recognition software. If you thought that CIMON would look like a mechanical robot, you are wrong. CIMON has a face of its own, a white screen with a smiley face. The astronaut AI assistant will be able to float around, by sucking air in and expelling it out through its special tubes once it is aboard the ISS. CIMON’s mission to space demonstrates researchers, the collaboration of humans and AI-powered technology for further explorations. However, it will be a long way before intelligent robots are ready to undertake principal tasks in the final frontier including helping astronauts repair damaged spacecraft systems or treating sick crewmembers. But a beginning has been made with CIMON and that day will probably be a reality soon. In its first space mission, CIMON will stay in space for a few months and is scheduled to return to earth in December. Post its return, scientists will study and assess its abilities for future implementations. With the launch of CIMON, a lifelong space-exploration association between humans and machine may have just begun. Content gathered by BTM robotics training centre, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centres in Bannerghatta road, robotics training centres in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
1
false