http://WWW.ROBOTICS4U.IN
ROBOTICS 5ab356e70402d10aa42866f8 False 36 2
OK
background image not found
Found Update results for
'drone control'
9
New giant drones are strong enough to perform jobs such as cleaning wind turbines, fighting fires and even carrying people to safety. Some of the dirtiest, most dangerous jobs are being taken over by artificial intelligence, robots, and drones. Machines are slowly becoming man’s best friend, helping us do tough, risky, or menial tasks. Future drones will do more than just peruse the skies, surveying and filming. New innovations in drone technology show their potential to take on much larger tasks that benefit society in new ways. New giant drones are now capable of cleaning wind turbines, fighting fires, and even carrying people to safety. An innovative startup, Aeron, has built a giant drone equipped with 28 motors and 16 batteries. The stout prototypes can lift up to 400 pounds, potentially rescuing people from burning buildings. In a series of videos, the founders demonstrate how the new drones can manoeuvre with hoses to clean and de-ice wind turbines. These large quadcopters can manoeuvre alongside tall buildings, clean the windows, or put out a potential fire.The ambitious startup, backed by Y Combinator, is already getting orders from around the world to help clean and de-ice wind turbines. The greatest challenge for these new drones is sustaining power. Relying on battery only, these drones can only carry a load for about twelve minutes. For now, the drones are better off tethered and connected to a power source from the ground. As the capability of drones expands, the implications for abuse become more real, too. A drone that can rescue people from fires can also identify, locate, and displace a person for various reasons. Large drones of this nature could be used to protect property, locating and removing threats from private areas. Who will make the rules that govern how drones can and cannot be used? A large drone that fights fires can also fight insurrection, threaten protestors, or spray down mobs. In the eyes of authority, this could be seen as a good use for drones, to curb violence; however, the power could readily be abused. Government forces could use drones in an authoritarian, intimidating manner, threatening peaceful assembly, free speech, and democracy. Drones equipped with tear gas could help riot police disperse their opposition. Large drones could easily be used as a means of force to control others. (Related: Drone makers looking to expand into civilian law enforcement market as a replacement for police helicopters.) A giant drone that can operate hoses to clean wind turbines also has the capability to operate hoses to fumigate from overhead. If a city council declared that a vector-borne disease was threatening their community, they could deploy these large drones overhead to fumigate mosquitoes and ticks in certain areas. The residents of the city will have no control over the operation or the number of nervous system toxins that are being sprayed into the air. That same drone could be used to spray disinfectants over an area that has been declared an outbreak zone. Health officials, paying no mind to the consequences of spraying people with biological agents and other chemicals, could experiment with airborne flu vaccines to combat a declared flu outbreak. As drone capabilities expand, it won’t be long before authorities begin using the technology to their advantage. It will be much easier for authorities to carry out force if they can hide behind the technology. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
Using your body to control a drone is more effective than a joystick. If you've ever been chastised for throwing your entire body around during gaming (because physically leaning into track corners definitely helps somehow), here's a bit of science-backed vindication. Researchers in Switzerland have discovered that using your torso to control a drone is far more effective than using a joystick. The team from EPFL monitored the body movements and muscular activity of 17 people, each with 19 markers placed all over their upper bodies. The participants then followed the actions of a virtual drone through simulated landscapes, via virtual reality goggles. By observing motion patterns, the scientists found that only four markers located on the torso were needed to pilot a drone through an obstacle course and that the method outperformed joystick control in both precision and reliability. The study's lead author, Jenifer Miehlbradt of EPFL's Translational Neuroengineering Laboratory, said: "Using your torso really gives you the feeling that you are actually flying. Joysticks, on the other hand, are of simple design but mastering their use to precisely control distant objects can be challenging." The proof-of-concept system still depends on body markers and external motion detectors to work, so the team's next challenge will be making the tech wearable and completely independent. However, the range of applications for it is enormous. Being able to virtually fly while your head, limbs, hand and feet are free to perform other tasks could be a major development for gaming, drone control or even the planes of the future. Content gathered by BTM robotics training centre, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centres in Bannerghatta road, robotics training centres in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
Food delivery drones take flight in China. You don't have to wait for food delivery drones... if you live in the right part of China. Alibaba's online meal giant Ele.me has been cleared to use drones for delivering orders in Shanghai's Jinshan Industrial Park. The initiative won't deliver directly to your abode, but it will save you a lot of travel time: there are 17 routes, each of with two fixed drop-off points. Your food should arrive within 20 minutes, which isn't always possible with conventional cars slogging through traffic. Despite the automation, Ele.me believes this could be better for drivers. Humans would only need to cover about 15 percent of its routes and should lower operating costs in the process. Existing couriers could make up to five times more income, it claimed. This approach wouldn't likely work in primarily residential areas, so you could easily argue that Ele.me is taking a shortcut to put drones into service. At the same time, this underscores a few of the advantages Chinese companies have when introducing commercial delivery drones. The US is only just considering looser rules that would enable practical drone couriers, while a Made in China 2025 campaign is providing grants, investments and loans to help technological innovation in fields like this. The edge might not last for long, but it's hard not to look on with some envy as Shanghai residents receive their grub from above. Content gathered by BTM robotics training centre, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centres in Bannerghatta road, robotics training centres in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
'Blind' Cheetah 3 robot can climb stairs littered with obstacles. MIT's Cheetah 3 robot can now leap and gallop across rough terrain, climb a staircase littered with debris, and quickly recover its balance when suddenly yanked or shoved, all while essentially blind. The 90-pound mechanical beast -- about the size of a full-grown Labrador -- is intentionally designed to do all this without relying on cameras or any external environmental sensors. Instead, it nimbly "feels" its way through its surroundings in a way that engineers describe as "blind locomotion, " much like making one's way across a pitch-black room. "There are many unexpected behaviours the robot should be able to handle without relying too much on vision, " says the robot's designer, Sangbae Kim, associate professor of mechanical engineering at MIT. "Vision can be noisy, slightly inaccurate, and sometimes not available, and if you rely too much on vision, your robot has to be very accurate in position and eventually will be slow. So we want the robot to rely more on tactile information. That way, it can handle unexpected obstacles while moving fast." Researchers will present the robot's vision-free capabilities in October at the International Conference on Intelligent Robots, in Madrid. In addition to blind locomotion, the team will demonstrate the robot's improved hardware, including an expanded range of motion compared to its predecessor Cheetah 2, that allows the robot to stretch backwards and forwards, and twist from side to side, much like a cat limbering up to pounce. Within the next few years, Kim envisions the robot carrying out tasks that would otherwise be too dangerous or inaccessible for humans to take on. "Cheetah 3 is designed to do versatile tasks such as power plant inspection, which involves various terrain conditions including stairs, curbs, and obstacles on the ground, " Kim says. "I think there are countless occasions where we [would] want to send robots to do simple tasks instead of humans. Dangerous, dirty, and difficult work can be done much more safely through remotely controlled robots." Making a commitment The Cheetah 3 can blindly make its way up staircases and through unstructured terrain, and can quickly recover its balance in the face of unexpected forces, thanks to two new algorithms developed by Kim's team: a contact detection algorithm, and a model-predictive control algorithm. The contact detection algorithm helps the robot determine the best time for a given leg to switch from swinging in the air to stepping on the ground. For example, if the robot steps on a light twig versus a hard, heavy rock, how it reacts -- and whether it continues to carry through with a step, or pulls back and swings its leg instead -- can make or break its balance. "When it comes to switching from the air to the ground, the switching has to be very well-done, " Kim says. "This algorithm is really about, 'When is a safe time to commit my footstep?'" The contact detection algorithm helps the robot determine the best time to transition a leg between swing and step, by constantly calculating for each leg three probabilities: the probability of a leg making contact with the ground, the probability of the force generated once the leg hits the ground, and the probability that the leg will be in midswing. The algorithm calculates these probabilities based on data from gyroscopes, accelerometers, and joint positions of the legs, which record the leg's angle and height with respect to the ground. If, for example, the robot unexpectedly steps on a wooden block, its body will suddenly tilt, shifting the angle and height of the robot. That data will immediately feed into calculating the three probabilities for each leg, which the algorithm will combine to estimate whether each leg should commit to pushing down on the ground, or lift up and swing away in order to keep its balance -- all while the robot is virtually blind. "If humans close our eyes and make a step, we have a mental model for where the ground might be, and can prepare for it. But we also rely on the feel of touch of the ground, " Kim says. "We are sort of doing the same thing by combining multiple [sources of] information to determine the transition time." The researchers tested the algorithm in experiments with the Cheetah 3 trotting on a laboratory treadmill and climbing on a staircase. Both surfaces were littered with random objects such as wooden blocks and rolls of tape. "It doesn't know the height of each step and doesn't know there are obstacles on the stairs, but it just ploughs through without losing its balance, " Kim says. "Without that algorithm, the robot was very unstable and fell easily." Future force The robot's blind locomotion was also partly due to the model-predictive control algorithm, which predicts how much force a given leg should apply once it has committed to a step. "The contact detection algorithm will tell you, 'this is the time to apply forces on the ground, '" Kim says. "But once you're on the ground, now you need to calculate what kind of forces to apply so you can move the body in the right way." The model-predictive control algorithm calculates the multiplicative positions of the robot's body and legs a half-second into the future if a certain force is applied by any given leg as it makes contact with the ground. "Say someone kicks the robot sideways, " Kim says. "When the foot is already on the ground, the algorithm decides, 'How should I specify the forces on the foot? Because I have an undesirable velocity on the left, so I want to apply a force in the opposite direction to kill that velocity. If I apply 100 newtons’s in this opposite direction, what will happen a half second later?" The algorithm is designed to make these calculations for each leg every 50 milliseconds, or 20 times per second. In experiments, researchers introduced unexpected forces by kicking and shoving the robot as it trotted on a treadmill, and yanking it by the leash as it climbed up an obstacle-laden staircase. They found that the model-predictive algorithm enabled the robot to quickly produce counter-forces to regain its balance and keep moving forward, without tipping too far in the opposite direction. "It's thanks to that predictive control that can apply the right forces on the ground, combined with this contact transition algorithm that makes each contact very quick and secure, " Kim says. The team had already added cameras to the robot to give it visual feedback of its surroundings. This will help in mapping the general environment and will give the robot a visual heads-up on larger obstacles such as doors and walls. But for now, the team is working to further improve the robot's blind locomotion "We want a very good controller without vision first, " Kim says. "And when we do add vision, even if it might give you the wrong information, the leg should be able to handle (obstacles). Because what if it steps on something that a camera can't see? What will it do? That's where blind locomotion can help. We don't want to trust our vision too much." This research was supported, in part, by Naver, Toyota Research Institute, Foxconn, and Air Force Office of Scientific Research. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
Experimental drone uses AI to spot violence in crowds. Whether or not it works well in practice is another story. Drone-based surveillance still makes many people uncomfortable, but that isn't stopping research into more effective airborne watchdogs. Scientists have developed an experimental drone system that uses AI to detect violent actions in crowds. The team trained their machine learning algorithm to recognize a handful of typical violent motions (punching, kicking, shooting and stabbing) and flag them when they appear in a drone's camera view. The technology could theoretically detect a brawl that on-the-ground officers might miss, or pinpoint the source of a gunshot. As The Verge warned, the technology definitely isn't ready for real-world use. The researchers used volunteers in relatively ideal conditions (open ground, generous spacing and dramatic movements). The AI is 94 percent effective at its best, but that drops down to an unacceptable 79 percent when there are ten people in the scene. As-is, this system might struggle to find an assailant on a jam-packed street -- what if it mistakes an innocent gesture for an attack? The creators expect to fly their drone system over two festivals in India as a test, but it's not something you'd want to rely on just yet. There's a larger problem surrounding the ethical implications. There are questions about abuses of power and reliability for facial recognition systems. Governments may be tempted to use this as an excuse to record aerial footage of people in public spaces, and could track the gestures of political dissidents (say, people holding protest signs or flashing peace symbols). It could easily combine with other surveillance methods to create a complete picture of a person's movements. This might only find acceptance in limited scenarios where organizations both make it clear that people are on camera and with reassurances that a handshake won't lead to police at their door. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
Controlling robots with brainwaves and hand gestures Computer Science and Artificial Intelligence Laboratory system enable people to correct robot mistakes on multiple-choice tasks. Getting robots to do things isn’t easy, usually, scientists have to either explicitly program them or get them to understand how humans communicate via language. But what if we could control robots more intuitively, using just hand gestures and brainwaves? A new system spearheaded by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) aims to do exactly that, allowing users to instantly correct robot mistakes with nothing more than brain signals and the flick of a finger. Building off the team’s past work focused on simple binary-choice activities, the new work expands the scope to multiple-choice tasks, opening up new possibilities for how human workers could manage teams of robots. By monitoring brain activity, the system can detect in real-time if a person notices an error as a robot does a task. Using an interface that measures muscle activity, the person can then make hand gestures to scroll through and select the correct option for the robot to execute. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
Wireless 'RoboFly' Looks like an Insect, Gets Its Power from Lasers. You might remember RoboBee, an insect-sized robot that flies by flapping its wings. Unfortunately, though it has to be hard-wired to a power source. Well, one of RoboBee's creators has now helped develop RoboFly, which flies without a tether. Slightly heavier than a toothpick, RoboFly was designed by a team at the University of Washington – one member of that team, assistant professor Sawyer Fuller, was also part of the Harvard University team that first created RoboBee. That flying robot receives its power via a wire attached to an external power source, as an onboard battery would simply be too heavy to allow the tiny craft to fly. Instead of a wire or a battery, RoboFly is powered by a laser. That laser shines on a photovoltaic cell, which is mounted on top of the robot. On its own, that cell converts the laser light to just seven volts of electricity, so a built-in circuit boosts that to the 240 volts needed to flap the wings. That circuit also contains a microcontroller, which tells the robot when and how to flap its wings – on RoboBee, that sort of "thinking" is handled via a tether-linked external controller. Content gathered by BTM robotics training centre, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centres in Bannerghatta road, robotics training centres in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
Firefighting Robot Snake Flies on Jets of Water. Using steerable jets of water like rockets, this robot snake can fly into burning buildings to extinguish fires. Fires have an unfortunate habit of happening in places that aren’t necessarily easy to reach. Whether the source of the fire is somewhere deep within a building, or up more than a floor or two, or both, firefighters have few good options for tackling them. They can either pour water into windows (which doesn’t always work that well), or they can try and get into the building, which seems like it’s probably super dangerous. At the International Conference on Robotics and Automation last month, researchers from Tohoku University and National Institute of Technology, Hachinohe College, in Japan, presented a new kind of snake-like robot with the body of a fire house. Like other snake robots, this one has the potential to be able to wiggle its way into windows or other gaps in a structure, with the benefit of carrying and directing water as it goes. What’s so cool about this particular design, though, is how it powers itself: By firing high pressure jets of water downwards like rocket engines, it can lift itself off of the ground and fly. What’s happening here might be complex to implement in practice, but in principle, it’s not too complicated: There are sets of steerable nozzle modules distributed along the length of the hose. These modules siphon water out of the high pressure stream inside of the hose, and spray it downwards. As the water exits downwards at high velocity, it pushes the hose upwards, and with enough of these modules squirting out high pressure water, the entire hose can be lifted into the air. Just like a rocket, it’s not dependent on ground proximity to work, so as long as you keep on giving it more hose and water at a high enough pressure, it’ll go as high as you want. Since the nozzles are steerable, each module can direct itself independently, letting the hose weave itself through small gaps deep into a structure in order to find the source of a fire. And the “head” module comes with a few extra degrees of freedom to allow the water stream to be directed more precisely. And of course, while the head nozzle is fighting the source of the fire, a byproduct of the body of the house keeping itself airborne is that it’s drenching everything that it’s passing over, while also keeping itself cool. The 2-meter long prototype in the video above is intended to be a single segment in a robot that can be extended to an arbitrary length by just adding on more segments. A gas engine powered a compressor that provided water at 0.7 MPa. It worked reasonably well, as prototypes go, but it’s really more of a proof of concept in hardware than anything else, and obviously there’s a lot to do before a system like this could be real-world useful. The researchers readily admit that their current control algorithms are “not sophisticated, ” and that they’ll need to put some work into making it more stable, more controllable, and able to handle more modules. They’re actively working on it, though, and we’re looking forward to this tech being adapted to garden hoses as well. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
SAY HI TO CIMON, THE FIRST AI-POWERED ROBOT TO FLY IN SPACE. When you thought that Artificial Intelligence (AI) is redefining life on Earth, think again! Meet CIMON, the first AI-powered robot who was launched into space from Florida on Friday, June 29th to join the crew and assist astronauts of the International Space Station (ISS). CIMON was launched by a SpaceX rocket carrying food and supplies for the crew aboard the International Space Station. At CIMON’s pre-launch news conference, Kirk Shireman, NASA’s International Space Station (ISS) program manager, addressed that the knowledge base and ability to tap into AI in a way that is useful for the task that is done is really critical for having humans further and further away from the planet. CIMON or (Crew Interactive Mobile Companion) is programmed to answer voice commands in English. The AI-powered robot is roughly the size of a volleyball and weighs 5 kilograms. CIMON will float through the zero-gravity environment of the space station to research a database of information about the ISS. In addition to the mechanical tasks assigned, the AI-powered CIMON can even assess the moods of its human crewmates at the ISS and interact accordingly with them. An Intelligent Astronaut CIMON is the brainchild of the European aerospace company Airbus. With the artificial intelligence inside powered by IBM, AI-Powered CIMON was initially built for the German space agency. Alexander Gerst, a German astronaut currently aboard the ISS, assisted with the design of CIMON’s screen prompts and vocal controls. As per the mission description written by Airbus representatives, CIMON’s mission calls for the AI-Powered astronaut robot to work with Gerst on three separate investigations. Cimon’s tasks at ISS include experimenting with crystals, working together with Gerst to solve the Rubik’s cube and performing a complex medical experiment using itself as an ‘intelligent’ flying camera. CIMON can interact with anyone at ISS; the AI-powered robot will nod when any command is spoken in English. However, CIMON is programmed to specifically help Gerst during its first stay on the ISS. Alexander Gerst can make CIMON work by speaking commands in English like, ‘CIMON, could you please help me perform a certain experiment? or could you please help me with the procedure?'” In response, CIMON will fly towards Alexander Gerst, to start the communication. An Interactive Step Forward CIMON knows whom it is talking to through its inbuilt facial-recognition software. If you thought that CIMON would look like a mechanical robot, you are wrong. CIMON has a face of its own, a white screen with a smiley face. The astronaut AI assistant will be able to float around, by sucking air in and expelling it out through its special tubes once it is aboard the ISS. CIMON’s mission to space demonstrates researchers, the collaboration of humans and AI-powered technology for further explorations. However, it will be a long way before intelligent robots are ready to undertake principal tasks in the final frontier including helping astronauts repair damaged spacecraft systems or treating sick crewmembers. But a beginning has been made with CIMON and that day will probably be a reality soon. In its first space mission, CIMON will stay in space for a few months and is scheduled to return to earth in December. Post its return, scientists will study and assess its abilities for future implementations. With the launch of CIMON, a lifelong space-exploration association between humans and machine may have just begun. Content gathered by BTM robotics training centre, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centres in Bannerghatta road, robotics training centres in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
1
false