http://WWW.ROBOTICS4U.IN
ROBOTICS 5ab356e70402d10aa42866f8 False 36 2
OK
background image not found
Found Update results for
'equip children'
4
Therapy Robot Teaches Social Skills to Children with Autism For some children with autism, interacting with other people can be an uncomfortable, mystifying experience. Feeling overwhelmed with face-to-face interaction, such children may find it difficult to focus their attention and learn social skills from their teachers and therapists—the very people charged with helping them learn to socially adapt. What these children need, say some researchers, is a robot: a cute, tech-based intermediary, with a body, that can teach them how to more comfortably interact with their fellow humans. On the face of it, learning human interaction from a robot might sound counter-intuitive. Or just backward. But a handful of groups are studying the technology in an effort to find out just how effective these robots are at helping children with autism spectrum disorder (ASD). One of those groups is LuxAI, a young company spun out of the University of Luxembourg. The company says its QTrobot can actually increase these children’s willingness to interact with human therapists, and decrease discomfort during therapy sessions. University of Luxembourg researchers working with QTrobot plan to present their results on 28 August at RO-MAN 2018, IEEE’s international symposium on robot and human interactive communication, held in Nanjing, China. “When you are interacting with a person, there are a lot of social cues such as facial expressions, tonality of the voice, and movement of the body which are overwhelming and distracting for children with autism, ” says Aida Nazarikhorram, co-founder of LuxAI. “But robots have this ability to make everything simplified, ” she says. “For example, every time the robot says something or performs a task, it’s exactly the same as the previous time, and that gives comfort to children with autism.” Feeling at ease with a robot, these children are better able to focus their attention on a curriculum presented together by the robot and a human therapist, Nazarikhorram says. In the study that will presented at RO-MAN later this month, 15 boys ages 4 to 14 years participated in two interactions: one with QTrobot and one with a person alone. The children directed their gaze toward the robot about twice as long, on average, compared with their gaze toward the human. Repetitive behaviors like hand flapping—a sign of being uncomfortable and anxious—occurred about three times as often during sessions with the human, compared with the robot, according to the study. More importantly, with a robot in the room, children tend to interact more with human therapists, according to feedback the company received during its research, says Nazarikhorram. “The robot has the ability to create a triangular interaction between the human therapist, the robot, and the child, ” she says. “Immediately the child starts interacting with the educator or therapist to ask questions about the robot or give feedback about its behavior.” A number of groups have been developing digital therapeutics to treat psychiatric disorders, such as apps to treat substance abuse, and therapeutic video games to treat attention deficit/hyperactivity disorder. But there’s something about the embodied robot that gives it an edge over plain screens. “The child is just focused on the app and doesn’t interact with the person beside him, ” Nazarikhorram says. “With a robot, it’s the opposite.” Robot-based therapy for autism has been studied for more than a decade. For instance, scientists first conceived of KASPAR the social robot in the late 1990s. It is now being developed by scientists at the University of Hertfordshire in the United Kingdom. And there are at least two other commercial robots for autism: Robokind’s Milo and Softbank Robotics’ NAO. The MIT Media Lab recently used NAO to test a machine learning network it built that is capable of perceiving children’s behavior. The algorithm can estimate the level of interest and excitement of children with autism during a therapy session. The research was published in June in Science Robotics. “In the end, we want the robots to be a medium towards naturalistic human-human interactions and not solely tools for capturing the attention of the kids, ” says Oggi Rudovic, at the MIT Media Lab, who co-authored the machine learning paper in Science Robotics. The ultimate goal is to equip children with autism “with social skills that they can apply in everyday life, ” he says, and LuxAI’s research “is a good step towards that goal.” However, more research, involving more children over longer periods of time, will be needed to assess whether robots can really equip children with real-life social skills, Rudovic says. The QTrobot is a very new product. LuxAI started building it in 2016, finished a final prototype in mid-2017, and just this year began trials at various centers in Luxembourg, France, Belgium, and Germany. Nazarikhorram says she wanted to build a robot that was practical for classrooms and therapy settings. Her company focused on making its robot easily programmable by autism professionals with no tech background, and able to run for hours without having to be shut down to cool. It also has a powerful processor and 3D camera so that no additional equipment, such as a laptop, is needed, she says. Now LuxAI is conducting longer-term trials, studying the robot’s impact on social competence, emotional well-being, and interaction with people, Nazarikhorram says. We asked Nazarikhorram if it’s possible that pairing robots with children with autism could actually move them further away from people, and closer to technology. “That’s one of the fears that people have, ” she says. “But in practice, in our studies and based on the feedback of our users, the interaction between the children and the therapists improves.” Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centers in Bannerghatta road, robotics training centers in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore
Robots will never replace teachers but can boost children's education. Scientists say social robots are proving effective in the teaching of certain narrow subjects, such as vocabulary or prime numbers. But current technical limitations -- particularly around speech recognition and the ability for social interaction -- mean their role will largely be confined to that of teaching assistants or tutors, at least for the foreseeable future. The study was led by Professor in Robotics Tony Belpaeme, from the University of Plymouth and Ghent University, who has worked in the field of social robotics for around two decades. He said: "In recent years scientists have started to build robots for the classroom -- not the robot kits used to learn about technology and mathematics, but social robots that can actually teach. This is because pressures on teaching budgets, and calls for more personalized teaching, have led to a search for technological solutions. "In the broadest sense, social robots have the potential to become part of the educational infrastructure just like paper, white boards, and computer tablets. But a social robot has the potential to support and challenge students in ways unavailable in current resource-limited educational environments. Robots can free up precious time for teachers, allowing the teacher to focus on what people still do best -- provide a comprehensive, empathic, and rewarding educational experience." The current study, compiled in conjunction with academics at Yale University and the University of Tsukuba, involved a review of more than 100 published articles, which have shown robots to be effective at increasing outcomes, largely because of their physical presence. However it also explored in detail some of the technical constraints highlighting that speech recognition, for example, is still insufficiently robust to allow the robot to understand spoken utterances from young children. It also says that introducing social robots into the school curriculum would pose significant logistical challenges and might in fact carry risks, with some children being seen to rely too heavily on the help offered by robots rather than simply using them when they are in difficulty. In their conclusion, the authors add: "Next to the practical considerations of introducing robots in education, there are also ethical issues. How far do we want the education of our children to be delegated to machines? Overall, learners are positive about their experiences, but parents and teaching staff adopt a more cautious attitude. "Notwithstanding that, robots show great promise when teaching restricted topics with the effects almost matching those of human tutoring. So although the use of robots in educational settings is limited by technical and logistical challenges for now, it are highly likely that classrooms of the future will feature robots that assist a human teacher." Content gathered by BTM robotics training centre, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem educationin JP Nagar, robotics training centres in Bannerghatta road, robotics training centres in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
New giant drones are strong enough to perform jobs such as cleaning wind turbines, fighting fires and even carrying people to safety. Some of the dirtiest, most dangerous jobs are being taken over by artificial intelligence, robots, and drones. Machines are slowly becoming man’s best friend, helping us do tough, risky, or menial tasks. Future drones will do more than just peruse the skies, surveying and filming. New innovations in drone technology show their potential to take on much larger tasks that benefit society in new ways. New giant drones are now capable of cleaning wind turbines, fighting fires, and even carrying people to safety. An innovative startup, Aeron, has built a giant drone equipped with 28 motors and 16 batteries. The stout prototypes can lift up to 400 pounds, potentially rescuing people from burning buildings. In a series of videos, the founders demonstrate how the new drones can manoeuvre with hoses to clean and de-ice wind turbines. These large quadcopters can manoeuvre alongside tall buildings, clean the windows, or put out a potential fire.The ambitious startup, backed by Y Combinator, is already getting orders from around the world to help clean and de-ice wind turbines. The greatest challenge for these new drones is sustaining power. Relying on battery only, these drones can only carry a load for about twelve minutes. For now, the drones are better off tethered and connected to a power source from the ground. As the capability of drones expands, the implications for abuse become more real, too. A drone that can rescue people from fires can also identify, locate, and displace a person for various reasons. Large drones of this nature could be used to protect property, locating and removing threats from private areas. Who will make the rules that govern how drones can and cannot be used? A large drone that fights fires can also fight insurrection, threaten protestors, or spray down mobs. In the eyes of authority, this could be seen as a good use for drones, to curb violence; however, the power could readily be abused. Government forces could use drones in an authoritarian, intimidating manner, threatening peaceful assembly, free speech, and democracy. Drones equipped with tear gas could help riot police disperse their opposition. Large drones could easily be used as a means of force to control others. (Related: Drone makers looking to expand into civilian law enforcement market as a replacement for police helicopters.) A giant drone that can operate hoses to clean wind turbines also has the capability to operate hoses to fumigate from overhead. If a city council declared that a vector-borne disease was threatening their community, they could deploy these large drones overhead to fumigate mosquitoes and ticks in certain areas. The residents of the city will have no control over the operation or the number of nervous system toxins that are being sprayed into the air. That same drone could be used to spray disinfectants over an area that has been declared an outbreak zone. Health officials, paying no mind to the consequences of spraying people with biological agents and other chemicals, could experiment with airborne flu vaccines to combat a declared flu outbreak. As drone capabilities expand, it won’t be long before authorities begin using the technology to their advantage. It will be much easier for authorities to carry out force if they can hide behind the technology. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
Crop Counting Robot Today's crop breeders are trying to boost yields while also preparing crops to withstand severe weather and changing climates. To succeed, they must locate genes for high-yielding, hardy traits in crop plants' DNA. A robot developed by the University of Illinois to find these proverbial needles in the haystack was recognized by the best systems paper award at Robotics: Science and Systems, the preeminent robotics conference held at Pittsburgh. There's a real need to accelerate breeding to meet global food demand, " said principal investigator Girish Chowdhary, an assistant professor of field robotics in the Department of Agricultural and Biological Engineering and the Co-ordinated Science Lab at Illinois. "In Africa, the populations will more than double by 2050, but today the yields are only a quarter of their potential." Crop breeders run massive experiments comparing thousands of different cultivars, or varieties, of crops over hundreds of acres and measure key traits, like plant emergence or height, by hand. The task is expensive, time-consuming, inaccurate, and ultimately inadequate -- a team can only manually measure a fraction of plants in a field. "The lack of automation for measuring plant traits is a bottleneck to progress, " said first author Erkan Kayacan, now a postdoctoral researcher at the Massachusetts Institute of Technology. "But it's hard to make robotic systems that can count plants autonomously: the fields are vast, the data can be noisy (unlike benchmark datasets), and the robot has to stay within the tight rows in the challenging under-canopy environment." Illinois' 13-inch wide, 24-pound TerraSentia robot is transportable, compact and autonomous. It captures each plant from top to bottom using a suite of sensors (cameras), algorithms, and deep learning. Using a transfer learning method, the researchers taught TerraSentia to count corn plants with just 300 images, as reported at this conference. "One challenge is that plants aren't equally spaced, so just assuming that a single plant is in the camera frame is not good enough, " said co-author ZhongZhong Zhang, a graduate student in the College of Agricultural Consumer and Environmental Science (ACES). "We developed a method that uses the camera motion to adjust to varying inter-plant spacing, which has led to a fairly robust system for counting plants in different fields, with different and varying spacing, and at different speeds." This work was supported by the Advanced Research Project Agency-Energy (ARPA-E) as part of the TERRA-MEPP project at the Carl R. Woese Institute for Genomic Biology. The robot is now available through the start-up company, EarthSense, Inc. which is equipping the robot with advanced autonomy and plant analytics capabilities. TERRA-MEPP is a research project that is developing a low-cost phenotyping robot to identify top-performing crops led by the University of Illinois in partnership with Cornell University and Signetron Inc. with support from the Advanced Research Projects Agency-Energy (ARPA-E). Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
1
false