http://WWW.ROBOTICS4U.IN
ROBOTICS 5ab356e70402d10aa42866f8 False 36 2
OK
background image not found
Found Update results for
'system next month'
9
By 2023, India wants an advanced robotic soldier protecting its borders. This next-generation soldier should be intelligent enough to automatically recognize threats and take action. It should also be sophisticated enough to distinguish between threats and non-threats. If India achieves its objective, that will have a huge impact on two fronts at least. First, the robotic soldier would give India the ability to redefine geopolitics, regionally and globally. India could join a very small yet special club of countries (such as Russia and Israel) that are using robots to defend their borders. India may use its robotic soldier as a strategic weapon, like a nuclear bomb, to command attention and respect. From a nation that is currently a secondary partner to the U.S., Russia, or China, a robotic soldier would give India the capability to have a strategic agenda of its own. India will not just be a coalition partner. It will create its own coalition. The next U.N. peacekeeping mission might involve robotic soldiers imported from India or under the command of an Indian general experienced in commanding a robotic army. Second, building an army of robotic soldiers would affect the Indian economy. During the next financial year (2016-’17), India plans to spend nearly $40 billion on defense. This expenditure has quadrupled in the past 15 years. The expenditure was $11.8 billion in 2001. By 2022, India may be spending $620 billion on defense. It’s no wonder then that the Stockholm International Peace Research Institute (SIPRI) found India topping the list of nations importing weapons. According to SIPRI, India bought 14% of all weapons sold globally between 2011 and 2015. The defense budget not only accounts for 17.2 percent of the total planned government expenditure for the next fiscal year, but there is also an off-books number — pensions of defense personnel — that is rising rapidly. It will be around $10 billion in the next financial year. When one in five rupees is going toward defense operations, the economy takes a hit. While the robotic soldiers will not fix the problem by themselves or dramatically change the budget, they are likely to offer relief. Every rupee saved from defense will go toward development. What strategy will India adopt? Will it increase its imports of weapons and acquire the robotic soldiers from overseas, or will India create its robotic soldiers under the “Make in India” program? Or, just as Russia surprised the world with its intervention in the Syrian civil war, India could also enter and exit hot zones or create them in pursuit of its national interests. The robotic soldier would change the border dynamics with China, Bangladesh, and Pakistan, for sure. Information gathered by - Bangalore BTM Robotics training center, Bannerghatta Robotics training center.
Experimental drone uses AI to spot violence in crowds. Whether or not it works well in practice is another story. Drone-based surveillance still makes many people uncomfortable, but that isn't stopping research into more effective airborne watchdogs. Scientists have developed an experimental drone system that uses AI to detect violent actions in crowds. The team trained their machine learning algorithm to recognize a handful of typical violent motions (punching, kicking, shooting and stabbing) and flag them when they appear in a drone's camera view. The technology could theoretically detect a brawl that on-the-ground officers might miss, or pinpoint the source of a gunshot. As The Verge warned, the technology definitely isn't ready for real-world use. The researchers used volunteers in relatively ideal conditions (open ground, generous spacing and dramatic movements). The AI is 94 percent effective at its best, but that drops down to an unacceptable 79 percent when there are ten people in the scene. As-is, this system might struggle to find an assailant on a jam-packed street -- what if it mistakes an innocent gesture for an attack? The creators expect to fly their drone system over two festivals in India as a test, but it's not something you'd want to rely on just yet. There's a larger problem surrounding the ethical implications. There are questions about abuses of power and reliability for facial recognition systems. Governments may be tempted to use this as an excuse to record aerial footage of people in public spaces, and could track the gestures of political dissidents (say, people holding protest signs or flashing peace symbols). It could easily combine with other surveillance methods to create a complete picture of a person's movements. This might only find acceptance in limited scenarios where organizations both make it clear that people are on camera and with reassurances that a handshake won't lead to police at their door. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
Nvidia is training robots to learn new skills by observing humans. Initial experiments with the process have seen a Baxter robot learn to pick up and move colored boxes and a toy car in a lab environment. The researchers hope the development of the new deep-learning based system will go some way to train robots to work alongside humans in both manufacturing and home settings. “In the manufacturing environment, robots are really good at repeatedly executing the same trajectory over and over again, but they don’t adapt to changes in the environment, and they don’t learn their tasks, ” Nvidia principal research scientist Stan Birchfield told VentureBeat. “So to repurpose a robot to execute a new task, you have to bring in an expert to reprogram the robot at a fairly low level, and it’s an expensive operation. What we’re interested in doing is making it easier for a non-expert user to teach a robot a new task by simply showing it what to do.” The researchers trained a sequence of neural networks to perform duties associated with perception, program generation, and program execution. The result was that the robot was able to learn a new task from a single demonstration in the real world. Once the robot witnesses the task, it generates a human-readable description of the states required to complete the task. A human can then correct the steps if necessary before execution on the real robot. “There’s sort of a paradigm shift happening in the robotics community now, ” Birchfield said. “We’re at the point now where we can use GPUs to generate essentially a limitless amount of pre-labeled data essentially for free to develop and test algorithms. And this is potentially going to allow us to develop these robotics systems that need to learn how to interact with the world around them in ways that scale better and are safer.” In a video released by the researchers, human operator shows a pair of stacks of cubes to the robot. The system then understands an appropriate program and correctly places the cubes in the correct order. Information gathered by - Robotics for u. Bangalore Robotics, BTM Robotics training center, Robotics spares, Bannerghatta Robotics training center, best robotics training in bangalore,
Controlling robots with brainwaves and hand gestures Computer Science and Artificial Intelligence Laboratory system enable people to correct robot mistakes on multiple-choice tasks. Getting robots to do things isn’t easy, usually, scientists have to either explicitly program them or get them to understand how humans communicate via language. But what if we could control robots more intuitively, using just hand gestures and brainwaves? A new system spearheaded by researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) aims to do exactly that, allowing users to instantly correct robot mistakes with nothing more than brain signals and the flick of a finger. Building off the team’s past work focused on simple binary-choice activities, the new work expands the scope to multiple-choice tasks, opening up new possibilities for how human workers could manage teams of robots. By monitoring brain activity, the system can detect in real-time if a person notices an error as a robot does a task. Using an interface that measures muscle activity, the person can then make hand gestures to scroll through and select the correct option for the robot to execute. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
This Terrifying Robot Wolf is protecting the crops of Japanese Farmers For the last eight months, farms near Kisarazu City in Japan have been home to a horrifying robot wolf. But don’t worry; it wasn’t created to terrorize local residents (although, from the looks of the thing, it probably did). Its official name is “Super Monster Wolf, ” and engineers designed it to stop animals from eating farmers’ crops. In truth, the story of the robot wolf is more than a little sad. As Motherboard reports, wolves went extinct in Japan in the early 1800s. A state-sponsored eradication campaign. Now, parts of Japan are overrun with deer and wild boar. They love to feast on farmers’ rice and chestnut crops. Obviously, farmers do not love this. Fast forward 200 years and humans create a robotic wolf to replace the species they killed off. But there is some good here. The first official trial of the robot wolf just ended and surprised it was a resounding success. In fact, it was such a success that the wolf is entering mass production next month. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP Nagar, robotics training centers in Bannerghatta road, robotics training centers in JP Nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore,
This Terrifying Robot Wolf is protecting the crops of Japanese Farmers. For the last eight months, farms near Kisarazu City in Japan have been home to a horrifying robot wolf. But don’t worry; it wasn’t created to terrorize local residents (although, from the looks of the thing, it probably did). Its official name is “Super Monster Wolf, ” and engineers designed it to stop animals from eating farmers’ crops. In truth, the story of the robot wolf is more than a little sad. As Motherboard reports, wolves went extinct in Japan in the early 1800s. A state-sponsored eradication campaign. Now, parts of Japan are overrun with deer and wild boar. They love to feast on farmers’ rice and chestnut crops. Obviously, farmers do not love this. Fast forward 200 years and humans create a robotic wolf to replace the species they killed off. But there is some good here. The first official trial of the robot wolf just ended and surprised it was a resounding success. In fact, it was such a success that the wolf is entering mass production next month. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
Nvidia 's AI makes a breakthrough in ray tracing(computer graphics): Nvidia' AI that started out in 2017 as something that was not expected to do as much as it has already done like enriching graphics, transforming huge amounts of medical data into life saving breakthroughs, identifying diseases with a simple drop of blood, finding new ways to bring cures to the market faster, helping crops to flourish with optimal materials, customer assistance, self driving vehicles, analysis of various things in search for solutions etc. This AI became popular due to the Isaac robot simulator program. This got rid of programming and let the AI or robot think and learn on its own. Of course initially it was inefficient but after they found out that the robot could successfully learn something like hockey they wanted to make it efficient. This is where their idea of a virtual world comes in. They crated a program that takes the brain of a robot and puts it in a virtual world where it is allowed to try as much as it likes to achieve a certain task. This virtual world follows the laws of our world except for time. In this world a robot can practice its goal in very less time therefore becoming efficient. This AI has now made a breakthrough in computer graphics. ray tracing which is a method used for non real time instances due to its low computing speed has now been turned into a more faster computing one to handle real time gaming systems. Ray tracing is normally used to enhance effects bye understanding how our eye works, but was unable to handle on going instances like gaming and that was why it was limited to only movies.But now thanks to the AI and the quadro GV100 it is now possible to use get high quality graphics by using ray tracing for games as well. This also cuts the cost to 1/5 the original and takes 1/7 the original time taken. Issued by BTM layout robotic center
Researchers build a self-healing 'robot skin'. Puncture a hole, and the alloy will fill in the gap. Most conventional androids are fairly rigid, susceptible to damage and difficult to repair. However, scientists are determined to (literally) give them thicker skins. They've experimented with soft, deformable circuits that are flexible, and could reduce business expenses in the long term -- but are still prone to tearing and puncturing. The solution to these issues may lie in one recent advancement. A group of researchers from Carnegie Mellon University have found a way to counter surface damage and electrical failure commonly observed in soft materials used in engineering robotic electronics. Like previous efforts, it involves a certain kind of polymer. To create a material that is both flexible and resistant to damage, Carmel Majidi and his team inserted liquid micro droplets of a gallium-indium based metal alloy into a soft, elastomer shell. Essentially, it's a solid-liquid hybrid that is stretchable, electrically insulating and capable of auto-repair even when damaged multiple times. Where most other self-healing soft electronics need exposure to heat, increased humidity or manual reassembly to get back to health, the metal-elastomer composite heals itself by forming new electrical pathways. Majidi says the inspiration behind the composite material comes from the nervous system's ability to regenerate itself. It isn't mimicking neuroplasticity entirely, though; while the metal-elastomer could be useful in wearable computing and inflatable airships to protect electrical wiring from potential damage, there's no such protection for mechanical or structural damage. That's the eventual aim -- creating a material which helps robots weather both electrical and structural defects and, like Astro Boy, interact with humans more safely. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
New giant drones are strong enough to perform jobs such as cleaning wind turbines, fighting fires and even carrying people to safety. Some of the dirtiest, most dangerous jobs are being taken over by artificial intelligence, robots, and drones. Machines are slowly becoming man’s best friend, helping us do tough, risky, or menial tasks. Future drones will do more than just peruse the skies, surveying and filming. New innovations in drone technology show their potential to take on much larger tasks that benefit society in new ways. New giant drones are now capable of cleaning wind turbines, fighting fires, and even carrying people to safety. An innovative startup, Aeron, has built a giant drone equipped with 28 motors and 16 batteries. The stout prototypes can lift up to 400 pounds, potentially rescuing people from burning buildings. In a series of videos, the founders demonstrate how the new drones can manoeuvre with hoses to clean and de-ice wind turbines. These large quadcopters can manoeuvre alongside tall buildings, clean the windows, or put out a potential fire.The ambitious startup, backed by Y Combinator, is already getting orders from around the world to help clean and de-ice wind turbines. The greatest challenge for these new drones is sustaining power. Relying on battery only, these drones can only carry a load for about twelve minutes. For now, the drones are better off tethered and connected to a power source from the ground. As the capability of drones expands, the implications for abuse become more real, too. A drone that can rescue people from fires can also identify, locate, and displace a person for various reasons. Large drones of this nature could be used to protect property, locating and removing threats from private areas. Who will make the rules that govern how drones can and cannot be used? A large drone that fights fires can also fight insurrection, threaten protestors, or spray down mobs. In the eyes of authority, this could be seen as a good use for drones, to curb violence; however, the power could readily be abused. Government forces could use drones in an authoritarian, intimidating manner, threatening peaceful assembly, free speech, and democracy. Drones equipped with tear gas could help riot police disperse their opposition. Large drones could easily be used as a means of force to control others. (Related: Drone makers looking to expand into civilian law enforcement market as a replacement for police helicopters.) A giant drone that can operate hoses to clean wind turbines also has the capability to operate hoses to fumigate from overhead. If a city council declared that a vector-borne disease was threatening their community, they could deploy these large drones overhead to fumigate mosquitoes and ticks in certain areas. The residents of the city will have no control over the operation or the number of nervous system toxins that are being sprayed into the air. That same drone could be used to spray disinfectants over an area that has been declared an outbreak zone. Health officials, paying no mind to the consequences of spraying people with biological agents and other chemicals, could experiment with airborne flu vaccines to combat a declared flu outbreak. As drone capabilities expand, it won’t be long before authorities begin using the technology to their advantage. It will be much easier for authorities to carry out force if they can hide behind the technology. Content gathered by BTM robotics training center, robotics in Bangalore, stem education in Bangalore, stem education in Bannerghatta road, stem education in JP nagar, robotics training centers in Bannerghatta road, robotics training centers in JP nagar, robotics training for kids, robotics training for beginners, best robotics in Bangalore.
1
false